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Abstract, An analytic expression f o r k  dynamical conductivity b(m) of spinless fermions with 
local disorder and nearest-neighbour repulsion is derived on lattices with infinite coordination 
number 2. The model in exocIly solvable in the whole paramew range assuming two possible 
phases: a homogeneous phase and a check&Qard chargedensity wave (COW). Away hom 
half filling the system displays anomalous behaviour: weak particledensity Ruclualions favour 
spontane~~s symmetry breaking. F m  we invesligate UR effects of this anomaly on the 
wnductivity in Ihe AC and DC regimes. Second. we focus on the Moll transition occurring 
al rem temperature aI half filling. The critical exponents for the conductivity are computed for 
the dependence on the interaction U. the disorder y .  the filling n. the temperabn'e 7 and the 
frequency m. 

1. Introduction 

Itinerant quantum systems with strong correlations are one of the important subjects of 
condensed matter theory. Interaction and disorder are the two main sources of correlation. 
This research field is very active [I+], for a review see [IO], but the full interplay between 
interaction and disorder effects is far from being completely understood. The main part 
of recent investigations considers interacting models containing spin degrees of freedom 
(e.g. the Hubbard model). The formation of local magnetic moments [6,71 poses serious 
problems in the investigation of such models. In the application of renormalization group 
techniques this effect hinders the description of the meta4nsulator transition (Mm) because 
the magnetic effects occur before the MIT is reached 17-91. 

Since no exact solution of a disordered itinerant quantum model is available for 
dimensions d > 1, we turn to the construction of a comprehensive mean-field theory capable 
of treating disorder and interaction on an equal footing. Recently it has been found that 
such a mean-field theory is provided by the solution of a lattice model in the limit of 
high coordination number Z [11,12], which was introduced for itinerant quantum models 
in [13], for a review see. [14]. The solution, however, of a Hubbard-like model with or 
without disorder in the limit 2 + 00 is still an extremely complicated problem, which can 
be tackled at present only by means of QMC simulations [5,15-18]. The results obtained 
by this method do not yet yield a consistent picture of the MIT. 

The situation is much clearer for a model of spinless fermions, i.e. a model allowing 
only for one kind of fermion per site. We consider fermions that interact repulsively on 
neighbouring sites (a screened Coulomb interaction); disorder is included by randomly 
distributed local energies. Here an emct solution in the limit Z + 00 is available. We refer 
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the reader to a previous paper [12]t, which we will designate in the rest of the paper by 
[WVI. 

To abandon the spin degrees of freedom is certainly a serious restriction. The charge 
degrees of freedom, however, are responsible for the electric current so that a MIT can be 
investigated. A detailed knowledge of this simpler scenario is certainly of great help in 
understanding the MIT in more complex systems with spin. Moreover, spinless fermions 
provide a model in their own right for the description of strongly polarized systems, as well 
as for ferromagnetic (or femmagnetic) systems where one spin band is completely filled 
and only the other has to be dealt with (e.g. magnetite Fe304, as first suggested in [191). 

In one dimension the model of spinless fermions without disorder is solved exactly 
by means of a Bethe ansatz [20,21]. At half filling the ground state passes from a 
homogeneous phase to a charge-density ordered phase at a finite value of the interaction. 
This tuns  out to be a peculiarity of d = 1 [22]. In infinite dimensions, d -+ 00, the 
interaction enters in a diagrammatic expansion only via the Hartree diagram [231, and 
spontaneous symmehy breaking occurs for an infinitesimally small interaction at half filling 
[wv]. Without interaction, but with disorder, the infinite4imensional system is solvable: 
the solution is equivalent to the equations of the coherent-potential approximation [%I. 

The system with both interaction and disorder displays a transition at finite interactions 
[VUVI. The transition implies band splitting, which induces a metal-insulator transition 
at half filling. Since it is induced by the interaction it represents an example of a Uon 
transition. Away from half filling we found that in a certain parameter range the critical 
interaction is anomalously lowered by small pdcledensity fluctuations due to disorder 
and/or temperature. 

In the present paper we will give an analytic description of the dynamical conductivity 
of spinless fermions in the limit Z-+ cu in the whole parameter range (interaction, disorder, 
temperature, filling). It will be based on the one-particle properties presented in [wv]. We 
find that vertex corrections do not contribute: they are suppressed by the limit Z -+ 00. 

In the Hubbard model without disorder this has been shown in [=I. Our calculations are 
formally performed for the Bethe lattice and on an appropriately defined periodic extension 
of this lattice that allows a canonical definition of transpolt. The results, however, depend 
on the lattice sbucture only via the free density of states, which is half-elliptic for the Bethe 
lattice in Z -+ CO. Therefore, we would like to emphasize that our calculations can equally 
be done for any other WS. In particular, one could use the DOS for the three-dimensional 
simple cubic lattice. 

We investigate the effects of the anomaly on the conductivity away from half filling. It 
turns out that in the anomalous region the Dc conductivity is larger for lower temperature. 
The same effect occurs in the dependence on the disorder, but is less clearly visible. In 
the AC conductivity, also, the peak struclure due to the energy gap vanishes anomalously 
on lowering of the temperamre/disorder in a certain parameter region. Furthermore, we 
examine the Moa transition at half filling. computing the dependence of the DC conductivity 
on various parameters: interaction, disorder, doping and temperature. We calculate all the 
corresponding critical exponents. 

The present paper is set out as follows. In section 2 the Hamilton operator and the 
lattice are introduced. In addition we recall essential results of our previous paper [vw). 
The necessary formalism to calculate a transport coefficient is presented in section 3; the 
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t Unfonunately in this paper figures 9. 10 and 1 1  were printed in the wmng order. Comlly. the plot of figure 9 
belongs lo the caption of figure 1 I ,  the plot of figurr 10 to the option of figure 9 and the plot of figure 11 to the 
caption of figure 10: see also the errat!". Phys.: Co"redMaucr 4 10103 (1992). 
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evaluation of the result for the AC conductivity is given in the subsequent section, whereas 
the DC conductivity is discussed in section 5,  emphasizing the Moa transition. The main 
part of the paper concludes with the discussion in section 6. 

2. Model 

2.1. Hamilton operator and f o m i i s m  

We use a tight-binding Hamiltonian for spinless fermions with nearest-neighbour hopping, 
local disorder and nearest-neighbour repulsion (screened Coulomb interaction) 

(1) 
1 A = E(€i - &ri; + E l i j  tpj  + 5 uij i; i j  

i i.1 1.J 

where (ti) are the creation (annihilation) operators for the fermion on site i ,  ii = ET;, 
and U i j ,  tij  = 0 if i, j are not nearest neighbours. We shall investigate this Hamiltonian 
in the limit of high coordination number, Z -+ 03. For the model to remain non-trivial in 
this limit, the hopping mahix elements and the interaction matrix elements are scaled as 
til := - t / a  and U i j  := U/Z, respectively [ 13,231. The energy ei  is a stochastic variable 
drawn from some local site-independent distribution function P ( E ) .  The chemical potential 
is b. In what follows we will use the conventions fi = 1, ks = 1 and t = I t .  

In order to calculate the conductivity we work with an extension of the Bethe lattice: 
the periodic Bethe lattice (PBL, see figure 1). It consists of linearly aligned and linked 
replicas of a simple Bethe lattice. Its coordination number Z is given by K + 3, where K 
is the branching ratio of the underlying Bethe lattice. The periodic Bethe lattice will be 
described more precisely in the subsequent section. At the present stage it is sufficient to 
state that it has the same one-particle properties as the underlying Bethe lattice in the limit 
under consideration, i.e. Z + CO. 

In comparison with hypercubic lattices one easily sees that an important feature of a 
lattice in the correlation problem of spinless fermions, namely the bipartite structure, is 
shared by the Bethe lattice and the periodic Bethe lattice. Indeed, in the limit Z --t CO the 
PBL is equivalent to a hypercubic lattice with a half-elliptic DOS. This important equivalence 
is derived in appendix 2 for the thermodynamics and the conductivity. The half-elliptic DOS 
has realistic features in common with the me threedimensional DOS: a finite band width 
and a square-root behaviour at the edges (contrary to the hypercubic infinite-dimensional 
Gaussian DOS found in 1131). 

. 

Figure 1. Pati of the periodic Bethe lanice at K = 2; 
each sheet slands for one simple Bethe lattice. They are 
mutually connected to fm a periodic structure in the x 

* x  direction . .. .~ . .. . . ~. ,~ 

t In [Wvl it was erroneously suted that r/& = 1. whereas it should be f = 1. 
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The Green function formalism we use is the locator formalism, which is the natural 
choice on a Bethe lattice [26]. Local operators constitute the unperturbed Hamiltonian: 
hopping and interactions induce a self-energy &,(U). 

It is here that the limit 2 + 03 enters, essentially by suppressing certain classes of 
diagrams (for details see section 2.1 in [wv]). To illustrate this point we state (i) that in 
the pure interacting case (no disorder), in the limit of infinite coordination number, only 
the Hartree diagrams survjve [E!], and (ii) that in the pure disorder case (no interaction) 
the coherent-potential approximation (mA) becomes exact in the limit Z + 00 [NI. If both 
disorder and interaction are present the h i t  Z-t 03 is still extremely usefui: the self-energy 
is still local Xi,(@) + Xi(@) and it decouples into two independent contributions: 

xj (w)=uj(w)+Si .  (2) 
In the locator formalism q ( m )  results from the hopping and sj from the interaction; they 
are straightfoward to calculate, see equation (8) of [vuv]. (The site subscript distinguishes 
between the self-energy uj(o) and the conductivity U(@).)  

The locality of the self-energy is a typical mean-field property and is found in the limit 
of infinite coordination number for any form of interaction and disorder [ 1 I]. In general 
models, however, the decoupling is not complete: the two contributions in (2) depend on 
each other self-consistently and si is also w dependent. 

2.2. Thermodynamic properties 
We would like to emphasize that all subsequent results are equally valid for hypercubic 
lattices in the limit d + 00 assuming a half-elliptic DOS, although hypercubic lattices contain 
loops in contrast to the Bethe lattice. Since we deal in any case with bipartite lattices, i.e. 
lattices of A-B structure, we have to take into account at least two phases depending on 
the interaction strength U: at low U the homogeneous phase (invariant under the discrete 
lattice translations), and at high U a checkerboard phase or charge-density wave (CDW) with 
altemating particle densities. The latter is the symmetry-broken phase in which two locators, 
gL and gu, can be distinguished. The locator gL describes fermions on the sublattice with 
the higher particle density: these elecwns have on average a lower energy (indicated by 
the subscript L, denoting 'low'). The locator gu describes fermions on the sublanice with 
the lower particle density: these elecmns have on average a higher energy (indicated by 
the subscript U, denoting 'up'). The appropriate order parameter is half the difference of 
the particle densities b := f ( n ~  - n u )  or the ensuing energy difference A := Ub.  

we choose to work with a semi-elliptic probability distribution 
P ( 6 )  = (nfl-',?- for the random site energies E representing the disorder 
(equation (13) of [vuvl). Thereby 4&7 is the width of P ( E ) .  The locators are then given 
by the equations (see equations (14) of [wv]): 

In the followin 

The order parameter and the chemical potential are determined by the self-consistent 
equations (see equation (15) of [vw]) 

m 
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where f &) is the Fermi distribution function. In figure 2 three generic results of (3) are 
shown. The global density of states is p(w) = -( ImgL + Imgu)/2~. For order parameters 
A larger than AS = 2 y / m ,  band splitting occurs. (Throughout the present paper 
the subscript S indicates the values where band splitting occurs. This slightly changes the 
notation compared to equation (19) of [VUV].) The value for AS can be found by solving 
(3) at UJ = 0, since p( -o )  = p(o) .  For A > As there is an energy gap in the Dos denoted 
by 20.  For A < As there are no inner band edges, but either a minimum or a maximum 
depending on A. From (3) the behaviour of p ( o )  is found to be 

P ( 4  - P(0) o( h2 A < A s  f o r o x 0  

Figure 2. ws at fued disorder y against the energy 
for various values of the order panmeter A; band 

U splitting occurs at As. 

uv2 P 
Figure 3. Contour plots displaying lines of comtanf critical interaction U, in the T - f i  plane: 
(a) n = 0.5: (6) n = 0.45. 
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The more detailed form for (5b) results from the possibility of solving (3) exactly for 
A = AS and expanding around that solution. The Green functions for small w are 
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One of the amazing features found in an attentive examination of the solutions of 
(4) is the anmalous behaviour of the symmetry breaking as a function of temperature T 
and disorder a. Away from half filling, temperature and/or disorder may even facilitate 
spontaneous symmetry breaking to a certain extent. There are parameter ranges in which 
finite values of the order parameter are only found at T > 0. Thii phenomenon can be 
understood as the consequence of particle-density fluctuations induced by finite T or y .  
They bring the system in certain regions closer to half filling, where the tendency towards 
symmetry breaking is extremely high. For details we refer the reader to [W]. To provide 
nevertheless an overview of the anomaly we include a new and comprehensive figure: 
figure 3. The critical interaction U, is the value above which the order parameter A is 
finite. Its value can be computed from (4) in the limit A -+ 0. 

In figure 3 CUNS of constant Ut are plotted in the plane of T and a. (The square 
mot is taken to have two quantities with the same dimension.) In figure 3(u) the scenario 
is shown at half filling. No anomaly can be seen; an increase of T or increases U,. 
Moreover, a crossover behaviour can be conjectured, since the equipotential CUNS have 
an elliptic shape: Uc can be described by a function of a quadratic form of T and a. In 
figure 3(b) the corresponding curves at n = 0.45 are displayed. In comparison with half 
filling, three facts are remarkable: (i) the minimum of U, is not at the origin (anomaly); (ii) 
there is no obvious, simple relation liking T and #, (iii) there is no symmetry T * 
which would give evidence that dynamic and static fluctuations have quunfitafively the same 
effect. Qualitatively, however, they display a similar behaviour. 

The contour plot gives a quantitative insight in the structure of the anomaly and its 
dependence on the disorder and the temperahue. As such it is the most important finding 
of this section. The existence of the anomaly will also be visible in transport properties. 

3. 'hawport 

We now treat the problem of transport on the Bethe lattice. If a system is subject to an 
electrical field the electrons drift in the field direction. thereby giving rise to an electrical 
current Necessary for a finite M: conductivity is elastic scattering by impurities, which 
destroys the initial momentum of the electrons. On the Bethe lattice, however, there is no 
translational invariance to define a momentum. Therefore, although it is possible to discuss 
concepts like localization 1271, ballistic and diffusive transpofi are indistinguishable. 

The problem set out above can be circumvented by extending the lattice in such a way 
that it allows a momentum deiinition in at least one direction. We therefore choose a lattice 
which is periodic in one spatial direction, say x ,  and is of the Bethe kind perpendicular to x. 
see figure 1. Impurities may scatter electrons with momentum px to another momentum p i .  
Hopping in the x direction is also scaled with l / a .  This implies that the thermodynamics 
is that of the Bethe lattice, since the sheets effectively decouple at the one-particle level. 

We stress that all results obtained on the periodic Bethe lattice are equal to results 
achieved on a hypercubical lattice with infinite dimensions, where the Gaussian ws is 
replaced by a semi-elliptic Ws. The latter is. of course, exactly the DOS of the Bethe lattice 
with infinite coordination number. Thus we see that the lattice structure only enters via the 
DOS of the free-electron problem (for details see appendix 2). 
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The conductivity is found from 

where N(r)  = (K + 1 ) V - I .  r 2 1, counts the number of sites on a shell at distance r on 
the Bethe lattice. The distance in the periodic direction is given by x ,  which takes integer 
values. The lattice constant is set to unity. The term x p " ( x ,  r ;  U )  is the densitydensity 
response function: 

00 

x p p ( x ,  r ;  w )  := -i dtexp(i(o + io+)t)([i(x, r ;  t ) .  ?(o, O 011). (8) 

From the scaling of the hopping we know that x Y x ,  r ;  w )  (Y K-* in the limit K + W. 
Since the term with x = 0 does not contribute in (7) the leading order of do) is 1/K. Thus 
we have to calculate x p p (  1, r ;  0). This implies that in the limit K + 00 only two sheets 
of the periodic structure are important. Clearly it is the interplane hopping (i.e. hopping 
between the two sheets) from which the 1/K dependence originateS. 

The interplane density-density response function xpp(r.0) := xPp(1, r ;  w)  is directly 
connected to the interplane two-particle propagator. We look for an expression for 
E, N(r)XPP(r, w )  in terms of Green functions. 

The intraplane diagrammatic elements G@) are taken from equation (4) of [w]. The 
general interplane two-particle Green function H") is given by 

f$,k(zi> 1,. 2.) = b-' C$.\/,h,p("/? zp* Z,)'g,g,~i,r.rG~~,~~,(r,zj f z p  - 2.7 2,s zp) 
P I.('a<s' 

where the hopping and interaction are interplane. The calculation is simplified considerably 
since the diagrammatic contribution B(zl)  for U(@) that consist of one or more 'bubbles' 
vanishes 

This applies equally as well to the second term in (9) (interplane) as to an internal explicit 
dependence of U in GIz' (intraplane). Thus the interaction only enters the calculation 
through one-particle Green functions and H'" depends on two frequencies. We define 

(11) 

This expression sums over all r ,  E, N(r). and averages over the two sublattices. The 
conductivity may now be expressed as 
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where z,,, --f i(w + io+) denotes the analytical continuation of the Matsubara frequencies. 
In appendix 1 an explicit expression for H@)(z , ,  z,) is derived: 

G S Uhrig and R VIaming 

Apart from contributions proportional to S(w) we obtain for the real part of the conductivity 
from (12) and (13) 

ez 
Rw(o) = -- 

KBzm 

. (14) 2 t gu(z,)gL(zf - 2,) + g,(zl)gu(zf - 2,) .c( 1 - g,(zJgu(z[ - z,)g,(z,)g,(z, - 2,) - 2) lzm+i<m+iw) 

In this expression only one-particle Green functions appear. Hence, there are no vertex 
corrections for this model in the limit K --t W. This can be Seen even more explicitly in 
the equivalent derivation for the hypercubic w e  in appendix 2 In appendix 3 it is proven 
that the f-sum rule for the conductivity is fulfilled. 

4. AC conductivity 

4.1. Homogeneous state 
As stated in [wv] (section 3 (ii)), a finite interaction does not change gu and gL as long as 
the system remains in the homogeneous phase. This can be seen directly f” (3). where 
only A appears. Using (14) at A = 0 the conductivity becomes 

x 14(y + 1) - ( X  - 0/2)~1”~. (15) 
In figure 4(a) this result is plotted for various values of the temperahlre and the disorder 
away from half filling. The result is a typical B A  resuls for a review on CPA see [28]. What 
is essentially observed is a broadening, proportional to &7, of the Dmde peak at w = 0 
and a 1/w2 decay for intermediate w. 

4.2. CDW without disorder 

In the case of zero disorder and a large enough interaction to drive the system into a mw 
(i.e. A > 0) the conductivity becomes 
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Figure 4. The MI part of the dynamical Conductivity a(o) at n = 0.45 for WO special cases: 
(0) A = 0 (homogeneous phase) and fiNa y :  (b) y = 0 and finite A (cow) at U = 3. The 
Drude 8-@s at o = 0 in (b) are not shown 

where o takes only values such that the square roots are real; otherwise u(o) equals zero. 
For various values of the interaction and temperature the conductivity is plotted in figure 4(b) 
(the Dmde peak is not shown). For finite w we observe a real contribution resulting from 
resonances between the subbands. For zero temperature there is a divergence at frequencies 
equal to the band gap and a monotonic decrease. For finite temperatures the divergence 
remains and a minimum appears due to the minimum in the product of the WS and the 
Fermi disnibution away from half filling. 

4.3. Finite disorder and interaction at havfdling 

For a(@) a simple expression cannot be given for finite disorder in the CDW phase. We 
have to extract g, and gL from (3) and insert them in (14). The necessluy f i  and A values 
are self-consistently determined using (4). 

In figure 5(a) the conductivity is plotted for various values of the disorder at zero 
temperature. In our example we have a gap in the conductivity at y -= y, = 0.25, where 
y,  is related to the order parameter at which splitting occurs by As = 2 y s / m .  Since 
the conductivity vanishes at o = 0 the system is in the Mot! insulating state. For y e y. 
the disorder is not large enough to close the gap in the Dos. At the value o = 2 0 ,  where 
the gap in the conductivity ends, we have a quadratic behaviour u(o) 0: (o - 2D)2. In the 
case y = ys the gap in the DOS is marginal, and so is the gap in the conductivity. This is 
the Mot! transition point. After some algebra using (14) and (56) one finds at this point 

for small o. For larger disorder we see that the gap is closed by the broadening of 
the subbands so that we have a finite conductivity at o = 0. Due to the symmeby 
Reo(-@) = Reo(w) we have a quadratic extremum at o = 0. 

For a fixed value of the disorder, Reo(@) is depicted in figure 5(c) at various 
temperatures. For zero temperature the gap is visible, but for an arbitrarily small temperature 
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.6 
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0 . 
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x.4 
c 

2 

C I 5 

a M 

Figure 5. Ren(w) in four generic cases: (0) T = 0. n = 0.50. U = U s l y d , ~ :  (b) T = 0. 
n=0 .45 ,U=1 .39: (c )y=O.Zf i ,n=0 .50 ,U=2 .80; (d )y=0 .001 ,n=0 .45 ,U=1 .39 .  
Plots (0) and (c) display the gap in the conductivity: (b) and ( d )  display Ihe effect of Ihe anomaly. 

it is smeared out. As a result, a thermally induced finite Dc conductivity appears and a 
minimum at finite frequencies. For larger temperatures the systems enters the homogeneous 
phase again. 

4.4. Finite disorder and interadon away from harfftlling 

Figure 5(b) depicts three curves at different values of disorder to show the effecl of the 
anomaly. The system is in the homogeneous state for the highest and lowest disorder, but 
in the CDW for the intermediate. The anomaly manifests itself through the small wiggle at 
R w  m 0.3. 

The anomaly is much more visible in the temperature dependence of Rea(w). 
Figure 5(d) gives Rea(o) for two temperatures The real part of the conductivity shows an 
increase of two orders of magnitude at o sz 0.2 when the temperature is increased so that the 
system enters the CDW phase. For even higher temperatures the system tums homogeneous 
again, and the conductivity nearly equals that at low temperatures (not displayed). 

In figure 6(a) the real part of the conductivity is depicted as a function of frequency 
and temperature at half filling. The Mott gap is clearly visible. For higher temperatures 
the minimum at o = 0 disappean and for T > 0.27 the system is in the homogeneous 
phase with a quadratic maximum in Reo at a, = 0. Note that for temperatures just below 
the critical temperature, TE % 0.27, there exists a pronounced central peak, which can also 
be recognized in figure 5(c). It is due to thermal excitations. In figure 6(b) Rm(o, T) is 
depicted away from half filling, n = 0.45. Since the Fermi level is always in a region where 
the Dos is finite the Dc conductivity is never zero. This expresses itself by the existence of 
the additional central peak around OJ = 0 even at zero temperature. 
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Fwrc 6. 

(b) n = 0.45. 

Red against the frequency o and lhe 
3 temperature 7 at U = 2 and y = 0.1: ( U )  n = 0.5; 

5. DC conductivity 

5.1. Effect of the anomaly 

Resulting from (13) or (A1.12) and (12) we have for zero temperahue 

To include finite temperatures it suffices to convolute up&), as given above, with the 
temperature peak gf,. 

Figure 7 shows solutions of (18) and (4) for finite dopings. The curve for n = 0.495, 
corresponding to very low doping, displays the conventional and expected behaviour: 
increasing temperature induces a decrease of the order parameter A leading to a higher DC 
conductivity. Once the spontaneous ordering has been suppressed completely u x  depends 
only very little on the temperature (T > 0.15). The curve for higher doping n = 0.45, 
instead, shows anomalous behaviour: there is no spontaneous ordering at low temperatures 
T < 0.022. but afinite A occurs in an intermediate range of T. This increase of A induces 
an unexpected dip in the DC conductivity. Hence. the thermodynamic anomaly away from 
half filling also induces an anomalous effect in the transport property OX.  

5.2. Mott transirion 

We now turn to the investigation of the Mott transition at half filling. For a sufficiently 
large interaction, band splitting occurs for A >, AS so that the DC conductivity o x  vanishes 
at n = 0.5 and T = 0. It is of interest to know how the DC conductivity um disappears, 
depending on one of the possible parameters: interaction U, disorder y .  doping 6 = 1/2-n, 
temperature T and frequency w. 
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Figure 7. DC Conductivity against T for different dopings and interaclions at fixed y = 0.1. 
The curve at iugkr doping shows the generic effect of the anomaly, the w e  at lower doping 
the conventional behaviour. 

For w = p = 0 we obtain from (3) the retarded Green functions gL and gu: 

gL = A/(2y) - i[l/(l + y )  - A2/4y211'2 
gu = -A/(2y) - i [ l / ( l+  y )  - A2/4yzlt/z~ 

Inserting this in (18) yields 

which implies a vanishing DC conductivity for values of the order parameter A greater than 
2 y / m .  This was to be expected since this is the value AS where band splitting occurs. 
In figure 8 the DC conductivity is given as a function of the interaction U and the disorder 
parameter y ,  respectively. These curves result from (20) and (4). To find the dependence 
of ffm on the filling n and the temperature T one has to go back to (18) including the 
subsequent remark for finite temperatures, figure 9. 

The onset of the conductivity in figures 8 and 9 is described by the power law 
characterized by a critical exponent or by the exponential behaviour with which rises. 

(i) Concerning the dependence on the interaction U and the disorder y it can easily be 
Seen that this power law is a linear one: at A # 0, A depends differentially on U and y so 
that the vanishing of om in (20) is govemed by a factor US - U or y - ys, respectively. 
Thus the critical exponent of interaction and disorder is one, which can easily be recognized 
in figure 8. 

The other interesting singularity in figure 8 is the cusp in om due to the onset of the 
symmetry breaking. For small order parameter A, the lowering of om is proportional to 
A*, which in return depends linearly on U -U, or yc - y respectively. Hence the cusp is 
linear on both sides. The same cusp is found for the dependence on doping and temperature 
in figure 9. 

(ii) In a discussion of the critical exponents of the doping, temperature and frequency, it 
is necessary to distinguish whether the order parameter A0 at T = 0 and n = 1/2 is greater 
than, equal to or lower than As. The results for the w dependence have already been given 
in section 4. For the other dependencies we learn from (18) that um(p) is proportional 
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F i p r e  8. DC conductivity at n = 0.5 and 7 = 0 (U) against U at y = 0.25: (b) @nst f l a t  
U = Uslv4.u. 

n T 
Figure 9. oc conductivity at fixed y = 0.25 for different intenctions "spanding to the three 
generic cases in the relation of A@ to As: (a) 0 0 ~  against n a1 mm temperature; (b) ODC against 
T at half filling. 

to p 2 b )  or to the convolution of p2(p)  with the temperature peak at T # 0. (It is not 
necessary to distinguish between pu and p~ at the present stage since we are only interested 
in the critical onset) We refer to (5) for the results for p(p) .  

does not vanish since no complete band splitting 
occurs. Instead it displays a quadratic minimum. To see that this statement is correct, not 
only for 6 but also for T, we verified that the direct decrease of A(T) is quadratic, too. i.e. 
( A ( T )  - Ao) a -TZ, at half filling, which is important in the analysis of (20). 

In the marginal case A0 = AS the band edge is given by a cubic-root dependence, 
see (5b). This induces om a 6'/' and a T'l3. Note that in the calculation of the 

For A0 < AS the conductivity 
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dependence on doping, the Dos p(p)  also enten via 6 = j p ( b ) d p ,  see (4a). In addition 
to the simple power laws we may also compute the coefficients, since we know the form of 
the Green functions more precisely in the marginal case (6). Using (18) yields in leading 
order 
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where r(x) and t ( x )  are the Gamma function and the Riemann zeta function, respectively. 
In the general case A0 > As the band edge is characterized hy a quadratic m L  see 

(5c). This leads to a critical exponent 2/3  in the S dependence of ow. The temperature 
dependence is no longer given by a power law since a real band gap DO > 0 is present. 
Note that Do and A0 are identical only for vanishing disorder y = 0. In general Do is 
smaller than A0 and becomes zero for A0 = AS. Due to DO and the behaviour of the band 
edges u x  is proportional to Texp(-Do/T) at low temperatures. 

The results for the S and T dependence of the DC conductivity are summarized in table 1. 

Table 1. 

Variable 6 T o 
A o c A s  2 2 2 
A o = A s  ‘ f f 
A o > A s  5 m 2 

The exponents provide a complete characterization of the Moa transition in the system 
under investigation. It is remarkable that the critical exponents differ in different parameter 
ranges and depend on the variable, i.e. interaction U, disorder y .  doping 6, temperature T 
and frequency o. This leads to the important conclusion that no general cmssover is given: 
even variables of the same dimension entail different critical dependencies. 

Another interesting feature is found in figure 9(a) in the range of filling where the 
order parameter A is zero (the homogeneous phase). The DC conductivity has a box-like 
dependence on the filling: uw is nearly independent on n until It is very close. to the empty 
band. This can be understood by writing down (15) f o r o  = 0 

The DC conductivity depends only weakly on the chemical potential. Its dependence on the 
temperature is also fairly weak since the convolution of an almost constant function again 
yields an almost constant function. 

6. Discussion 

In the present paper we have discussed and extended the exact solution [vw] of a model 
of spinless fermions with a nearest-neighbour interaction and local disorder in the limit 
of infinite coordination number. The essential thermodynamic properties are recalled, 
especially the anomalously facilitated symmetry breaking by weak fluctuations due to 
temperature or disorder. 
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We introduced and calculated the conductivity using our previously established 
thermodynamic results. We extended the simple Bethe lattice to the periodic Bethe lattice, 
PEL, consisting of linearly arranged and linked parallel sheets of Bethe lattices. This allowed 
us to define a (crystal) momentum in the direction of periodicity. Disorder scatters states of 
well defined momentum, thereby inducing diffusion in contrast to ballistic propagation. In 
addition to the introduction of the conductivity on the PBL we derived the explicit expression 
for it in the limit 2 + CO. We proved thereby that the limit of high coordination number not 
only allows one to deal with interaction and disorder on an equal footing in the one-particle 
properties, but also in the two-particle properties. It tumed out that the limit Z + 8 
suppresses all vertex corrections and preserves the f-sum rule linking I d o o ( w )  to the 
kinetic energy. 

Moreover, we applied the limit of high coordination number to hypercubic lattices and 
showed that the basic equations for this problem are the same as for the Bethe lattice. 
The use of the same unperturbed DOS leads to identical equations. Although this fact was 
expected for the thermodynamics its verification provides further insight into the essential 
ingredients: the limit Z + CO and the bipartite structure. We proved under the Same 
preconditions that this equivalence can be extended to the dynamical conductivity. This 
is an interesting and less obvious finding which, extends our knowledge of the general 
properties of the limit of high coordination number. 

Subsequently, we discussed in great detail the effects of the phase transition on the 
conductivity, emphasizing two phenomena: (i) the effects of the anomalous behaviour in 
the AC and DC conductivity, and (ii) the Mott transition at half filling and zero temperahue 
due to the band splitting. 

We found that a finite order parameter leads to gap structure in the AC conductivity 
and to a lowering of the DC conductivity. Away from half filling these effects occur in a 
certain parameter range on increasing temperature and/or disorder. This is the signature of 
the anomalous behaviour. 

The DC conductivity vanishes at half filling and zero temperature for a strong enough 
interaction. This is the so-called Mott transition. It is characterized by the behaviour of u m  
when the parameters approach their critical values. We calculated the critical exponents for 
doping, temperam, interaction, disorder and frequency. They depend in general on the 
parameter range and the considered variable. No general crossover can be observed. 

It is not easy to make contact between experimental data and our results since, to our 
knowledge, experiments have focused on systems containing spin degrees of freedom. Yet 
there exist real systems, such as magnetite, which are described by a model of spinless 
fermions. However, magnetite has an inverse spinel structure and is thus not bipartite. 
Fuahermore, a realistic description of the material requims polamnic effects [29], which 
explains that the Venvey transition is of first order. Nevertheless, our findings agree. 
qualitatively with the temperature dependence of the DC conductivity below the Venvey 
transition, which is dominated by the existence of a gap and the fact that the order parameter 
does not attain its possible maximal value 0.5 1301. Quantitatively, however, we find in our 
model that the ratio DO/& is bound from above by 2, whereas it takes the value M 6 in 
magnetite. 

The lack of reference data also extends to quantum Monte Carlo simulations, since 
Hubbard-like models have attracted much more attention. We propose to investigate more 
closely spinless fermion systems, both by experiment and by simulation, in order to obtain 
a thorough understanding of the metal-insulator transition (MIT), where this important 
transition is not obscured by transitions involving the spin degrees of freedom [7-91. A 
complete understanding of the MIT in the simpler spinless fermion systems is a prerequisite 
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for a description of the MIT in the more complex situation with spin. This is particularly 
evident in the case where a separation of charge and spin degrees of freedom occurs r31.321, 
since the charge degrees of freedom cany the current 

Furthermore, a technical similarity between models with and without spin exists in 
infinite dimensions. The conductivity in the Hubbard model is given by the simple dressed 
bubble [Z], as is the case in our model. No vertex corrections need to be included. 
Thus similar densities of states lead to similar conductivities, as can be seen comparing 
our findings with recent theoretical results for the Hubbard model in d + CO [S, 15-18]. 
which are supported by experimental data (see e.g. 1331). For a comparison of oneparticle 
properties between spinless fermions and the results for the Hubbard model we refer the 
reader to [wv]. 

The results presented in this paper, together with our fmdings in [WV]. prove the 
applicability of the limit of higkcoordination number as a systematic method of dealing 
with different perturbations on an equal footing. One-particle as well as two-particle 
properties can be dealt with. It is a systematic method since it is controlled by a small 
expansion parameter: the inverse coordination number l/Z. This leads naturally to possible 
further steps. Our results can be extended by including systematic 1/Z corrections, thereby 
accessing the region of finite dimensions. As a first step in this direction one should 
redo our calculations with the appropriate densities of states in finite dimensions. In 
variational treabnents there are indications that this procedure yields very reasonable results, 
in agreement with Monte Carlo data [34]. 
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Appendix 1. 

In this appendix we calculate the general interplane two-particle propagator necessary to 
compute the dynamical conductivity. All properties are calculated in the symmetry-broken 
state, since the properties of the homogeneous state are simply deduced from this by putting 
the order parameter equal to zero. 

AI.1. One-particle Green functions 

The full locator, gu, is given by 

(Al.1) 

when i E U and vice versa for gL(zI) with i E L (see also equation (IO) in [VWl). The 
intraplane one-particle propagator G ( r ;  zl)  can be expressed as a power of these locators 
in the limit K + bo. This is because in the latter limit the self-energy is a local quantity, 
so that the propagator equals the free propagator with the energy shifted by X i .  The fact 
that we have two different self-energies for the different sublattices does not alter this. We 
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must distinguish between four situations, depending on whether i and j are members of the 
sublattice U or L. The propagator G(r;  z/) is given by a 2 x 2 matrix: 

(A1.2) 

where r = li - j l .  For r 2 0 we have e(r) = [ I  + (-l)']/2 and o(r)  = [ I  - (-l)rJ/2, 
whereas for r < 0 we have e(r)  E o(r) = 0. The elements in the first row describe 
propagation from sublattice U to sublattice U for r even, and to sublattice L for r odd. 
Similarly, the elements in the second row describe propagation stahng from sublattice L. 
The diagonal part of G(r, q), i.e. G(0, zr) ,  is a 'matrix locator'. 

We now tum to the interplane propagation on the PBL. One changes the sublattice as 
one propagates from one Bethe sheet to the next at equal Bethe coordinate. Therefore the 
direct hopping between the two Bethe sheets is 

(A1.3) 

On the PBL we calculate the interplane one-particle propagators in leading order of 
l / K .  The term H(O z!) describes the full propagation from one Bethe sheet to the other 
remaining at the same Bethe coordinate, whereas R(r;  zI) describes propagation from a 
site on the first Bethe lattice to a site at distance r on the other lattice with the interplane 
hopping at a fixed intermediate site. The former is given by 

The two propagators G(s; zI) in (A1.4) describe the propagation on each Bethe sheet, and 
H, takes account of the interplane hopping. The sum counts all possible intermediate paths. 
The interplane propagator Z? is basically the direct propagation with dressed hopping from 
one Bethe sheet to the other at a fixed intermediate site s. Thus we have 

B(r;  zI) = C(s; z/)G-'(O, z,)H(O; z,)G-'(O; q)G(r  - s, 2 0 .  ( A W  

Due to cancellation, is not dependent on s. Overcounting of locators in the product 
in (A1.5) is prevented by insertion of the inverse matrix locators C-'(O; z!). Calculation 
yields 

Note that the full interplane one-particle propagator H(r;  2,). which is not needed in the 
present confext, is given by H f r ;  zI) = k ( r ;  z l )  = (r + I)A(r: zl) .  
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A1 2. Two-particle Green functions 

The two-phcle properties can be writfen down in terms of full one-particle Green functions 
and pure hopping. Remember that the U dependence only enters through these one-particle 
quantities. The locator is defined as 
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where the latter result is obtained using (A1.7). Just as in the one-particle situation, we 
have for the intraplane propagator 

which describes the joined propagation of the particles. To find the interplane propagator 
one has to count all possible paths leading from a site 0 to a site at distance r .  Due to the 
limit K + 03 the particles move coherently only along the direct path from 0 to r .  Any 
excursion in the lattice takes place incoherently. It is rhis property that causes destructive 
interference and thus a finite conductivily. In view of this interpretation we divide the 
path in three parts: (i) coherent propagation from site 0 to site s. (ii) incoherent interplane 
hopping from s to t,  and (iii) coherent propagation from site. f to r .  Paths (i) and (iu) are 
simply given by GC2’(s) and G‘*’(r - f), respectively. Path (ii) can be directly found from 
(A1.6): 

(AI .9) 

In G@)(r  - t )  and in $*) the particles propagate simultaneously from one sublattice to the 
other. Therefore it is sufficient to work with 2 x 2 matrices, contrary to a more general 
formalism in which one would need 4 x 4 matrices. We construct the interplane two-particle 
propagator as 
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A simple expression for H(’)(r: 2,. z,) cannot be found for general r .  For ~ ( w ) .  
however, only the sum over r appears. Furthermore, we have to average over the two 
sublattices, see (11). Hence, we define 

(Al.11) 

where the trace refers to the 2 x 2 matrices. Using (A1.lO) and (Al.11) one obtains the 
formula 

and partial-fraction expansion results in (13). 

Appendiv 2. 

Here we show that in the limit of infinite coordination number, Z+ 03. the periodic Bethe 
lattice is equivalent to a hypercubic lattice with half-elliptic ws. This statement is m e  for 
the thermodynamic properties and for the conductivity. 

A2.1. Thermodynamics 

For the one-particle properties the equivalence is intuitive since the limit of Z+ CO ensures 
a mean-field behaviour: the equations defining the Dos involve only a single site and the 
rest of the lanice enters only via the Dos. Since both the hypercubic and Bethe Lattices 
are bipartite it is possible to divide each of them into two sublattices such that there is no 
direct hopping or interaction on one of the sublattices. In the limit Z + CO one is led to 
the introduction of an energy difference 2A between the two lattices and the distinction 
between the locators gu and g ~ .  Equations (4) define A self-consistently. 

To show how local disorder influences the locators the CPA equations are extended (e.g. 
[35]) to sitedependent problems 

c 

(A2.1) 

where I;[ is the local self-energy at site i, and gi the corresponding locator which is in tum 
calculated from the free locators g:” and the self-energies Xi. Indeed, the lattice structure 
does not enter explicitly. 

The dependence of the locators on the energy difference 2A is provided for the Bethe 
lattice by (3) at y = 0. The spectral function of g~ is then 

The same result is obtained by inverting the 2 x 2 matrix 
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with being the propagator from k to k’. This corresponds to the hypercubic problem. 
The vector Q is the nesting vector (n, n, . . . , n)=. The locator of the L lattice is then given 

G S Uhrig and R Vlaming 

by 

If the distribution po of the ~ ( k )  is -/2z the resulting spectral function of gL is 
identical to the one in (A2.2). The combined situation with disorder and symmetry breaking 
is included by allowing for a frequencydependent A in (A2.3), and by passing from o to 
o- E(@), where C ( w )  is the selfenergy averaged over the two sublattices. On the level of 
the thermodynamic properties the proof of our assertion is thereby completed. In the limit 
2 + w considering the Bethe lattice is equivalent to considering a hypercubic lattice with 
a half-elliptic DOS. 

A2.2. Transport 

The equivalence of the conductivity on the two lattices is the more interesting statement 
since it is less intuitive. We use the current-current response function ,yl’(o) defined as 
xpo(o) in (8) (see also l35.361) and 

U(@) = Ol(0)  + s(4 (A2.5) 

where 

ie’ 
uz(o) = -x”(o). (A2.6h) 

Let Cu(z,,,J and ZL(Z,) be the complete local self-energies on the two sublattices; we 
introduce A,,, := (Xu -  CL)/^ and w,,, := z,,, - (XU + W / 2 .  In the limit Z + w the 
current-current response function, which is of order 1/Z. is given by the dressed bubble 
only since all other diagrams either vanish faster than 1/Z or are identical to zero due to 
the parity of the current vertices [251. With the use of (A2.3) we find therefore 

0 

Wd (4 - s2(M - i i i ) ( W ?  - E’(k) - ii?) (b-4)‘i(w+io+) 
R 7  

(A2.7) 
In leading order 1/Z the expression ( & z ~ ( k ) ) 2  = 4sinz(k,)/Z can be substituted by 
its average 2 / 2  (the hopping is set to I/&). Exploiting the perfect-nesting property 
~ ( k  + Q) = - € ( l e )  we obtain 

(A2.8) 
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which can be decomposed in partial fractions, each of which yielding a one-particle Green 
function, i.e. 

with - -  
q := (w; - w: - A: + Ai)- '  

Am := ~ ( W I  + W, + & + zm) 

(A2.1oa) 
(A2.1Ob) 

(A2 w 
- -  

K ,  := i ( W i  + W m  - AI -Am)  KI  = -Km 

AI = -Am. 

In (A2.9) the shape of the DOS has not yet entered at all nor has the disorder distribution 
P ( E )  been specified. If we now choose po and P ( E )  to be half-elliptic, as in the main part 
of the paper, we may refer to the equivalent thermodynamic result (3) (see also (A2.1)) 
yielding 

(A2.11) 

By a similar line of argument 61 (0) is found: 

(A2.12) 

The last two equations (A2.11) and (A2.12) together give exactly the same dynamical 
conductivity as do (12) and (13). thereby concluding our argument. 

Appendix 3. 

In this appendix we verify the f-sum rule for the conductivity I371 

(A3.1) 

The subscript x x  indicates the direction in which the diagonal conductivity oxr is measured 
and which part of the kinetic energy per site f is included. Making use of the Kramers- 
Kronig relation [35] the LHS of (A3.1) can be expressed as -k wb(w).  Examining 
(12) and (13) it can be seen that only the first two terms of H'*) will contribute in the limit 
o + CO. Furthermore their contribution is identical. We obtain for the LHS of (A3.1) 

(A3.2) 

To compute the RHS we recall that the Green function corresponding to direct interplane 
hopping is given in (A1.4). Hence 

(A3.3) 
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where l$ is the creation operator on site i on the Bethe lattice I and &+,, is the annihilation 
operator on site i on the adjacent Bethe lattice I + 1. The matrix element for the hopping 
and its complex conjugate is - l / f l ,  which yields 
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(A3.4) 

Inserting (A3.4) and (A3.2) into (A3.1) easily proves that the f-sum rule for conductivity 
is fulfilled. The limit of infinite coordination number conserves sum rules, as was to be 
expected since sum rules are equalities that hold in every dimension (or for every branching 
ratio) so that they can be extended to Z + 00 if continuity is provided. 
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